

MALATTIA LINFOPROLIFERATIVA POST-TRAPIANTO

FAD SINCRONA 4 dicembre 2024

PTLD: strategie di prevenzione e monitoraggio nelle diverse tipologie di trapianto. Immunosoppressione, infezioni concomitanti e profilassi antivirale

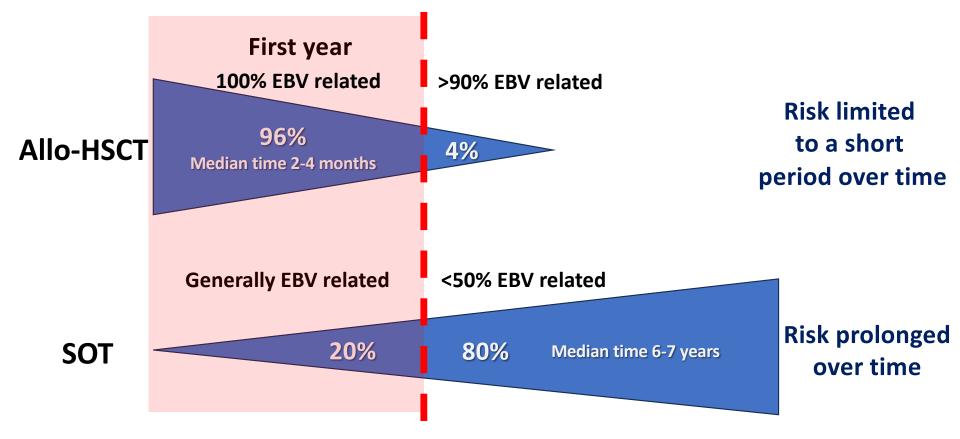
Corrado Girmenia Ematologia, AOU Policlinico Umberto I Sapienza Università di Roma

PLTD: differences in incidence and time distribution in allo-HSCT and SOT

HSCT

- 0.1-63%. EBMT study:3.2% (1.2% in MRD->11.2% in MMUD)
- Median time from transplantation: 2-4 months (4% later than 12 months)
- Almost 100% of PTLD cases are associated with EBV
- Generally derives from the donor's B lymphocytes

About 20.000 allo-HSCT per year in Europe.


SOT

- 1-33%. Spain study: 1.8% (1.4% in kidney->16.4% in multivisceral transplantation)
- Median time from transplantation: 6.7 y (21% within12 months)
- ~50% of PTLD cases are associated with EBV
- Generally derives from the recipient's B lymphocytes

About 28.000 SOT per year in Europe.

Styczynski, et al. Haematologica 2016;101:803-11 – Jimenez Ubieto et al Blood 2023;142:4490-2 - Tichadou et al Blood 2023; 142:443-5

EBV/PTLD in allo-HSCT and SOT: different epidemiology, different monitoring strategy

Revie

Recent Advances in Adult Post-Transplant Lymphoproliferative Disorder

Mariam Markouli ¹, Fauzia Ullah ², Najiullah Omar ², Anna Apostolopoulou ³, Puneet Dhillon ⁴, Panagiotis Diamantopoulos ¹, Joshua Dower ⁵, Carmelo Gurnari ², Sairah Ahmed ^{6,†} and Danai Dima ^{2,7,*,†}

Table 2. Risk factors for PTLD.

Post-SOT	Post-alloHSCT
Strong Evidence:	Strong Evidence:
Intestinal > Lung > Heart > others Multivisceral grafts or graft from deceased donors EBV Seronegative/naive EBV recipient pre-SOT High intensity IST Anti-thymocyte globulin use as part of induction IST	High degree of HLA mismatch HLA-mismatched or unrelated donor Haploidentical donor Umbilical cord blood graft use Type of conditioning regimen T-cell-depleting strategies (in vivo and ex vivo)
Weak Evidence:	Anti-thymocyte globulin use
a. Non-white ethnicity b. Young recipient and old donor age	Non-myeloablative conditioning regimens 3. Recipient old age > 50 years
c. Non-EBV infection	Weak Evidence:
d. Recipient HLA-A26 and B38 status	a. Acute GVHD b. History of splenectomy c. Diagnosis of Aplastic Anemia d. Non-EBV infection

Management of Epstein-Barr Virus infections and post-transplant lymphoproliferative disorders in patients after allogeneic hematopoietic stem cell transplantation: Sixth European Conference on Infections in Leukemia (ECIL-6) guidelines

Jan Styczynski, Walter van der Velden, 2 Christopher P. Fox, 3 Dan Engelhard, 4 Rafael de la Camara, 3 Catherine Cordonnier, 8 and Per Ljungman 7 on behalf of the Sixth European Conference on Infections in Leukemia, a joint venture of the Infectious Diseases Working Party of the European Society of Blood and Marrow Transplantation (EBMT-IDWP), the Infectious Diseases Group of the European Organization for Research and Treatment of Cancer (EORTC-IDG), the International Immunocompromised Host Society (ICHS) and the European Leukemia Net (ELN)

Haematologica 2016 Volume 101(7):803-811

Major risk factors for clinically significant EBV reactivation after allo-HSCT.

- T-cell depletion (in vivo, ex vivo)
- EBV serology
- HLA mismatch
- Severe acute or chronic GvHD

Table 3. Risk factors for EBV-PTLD after HSCT.

Pre-transplant risk factors

- T-cell depletion (either in vivo or ex vivo)
- · EBV serology donor/recipient mismatch
- Cord blood transplantation (CBT)
- · HLA mismatch
- Splenectomy
- Second HSCT

Post-transplant risk factors

- Severe acute (especially steroid-refractory) or chronic GvHD requiring intensive immunosuppressive therapy
- High or rising EBV viral load
- · Treatment with mesenchymal stem cells

Biol Blood Marrow Transplant 25 (2019) 1441-14

Biology of Blood and Marrow Transplantation

journal homepage: www.bbmt.or

Analysis

Risk Factors and Predictive Scoring System For Post-Transplant Lymphoproliferative Disorder after Hematopoietic Stem Cell Transplantation

Ayumi Fujimoto ^{1,2}, Nobuhiro Hiramoto ⁷, Satoshi Yamasaki ³, Yoshihiro Inamoto ⁴, Naoyuki Uchida ⁵, Tetsuo Maeda ⁶, Takehiko Mori ⁷, Yoshinobu Kanda ⁸, Tadakazu Kondo ⁸, Souichi Shiratori ¹⁰, Shigesaburo Miyakoshi ¹¹, Ken Ishiyama ¹², Kazuhiro Ikegame ¹³, Yoshiko Matsuhashi ¹⁴, Junj

Table 2

Characteristics of Allogeneic HSCT

haracteristics of Allogene	ic HSCT	
Variable	No PTLD Group (N = 39,928)	PTLD Group (N = 267)
Conditioning regimen, n (%)		
MAC	23,680 (60)	123 (47)
RIC	16,144 (40)	140 (53)
Unknown	104(0)	4(0)
Donor type, n (%)		1.7
MRD	13,034 (33)	24 (9)
MMRD	4043 (10)	52 (19)
MURD	10,135 (25)	81 (30)
MMURD	1977 (5)	16 (6)
СВ	10,030 (25)	88 (33)
Unknown	709(2)	6(2)
Stem cell source, (%)		
BM	20,063 (50)	126 (47)
PB	9660 (24)	52 (19)
СВ	10,030 (25)	88 (33)
Other/unknown	175 (0)/3 (0)	1 (0)/0 (0)
GVHD prophylaxis, n (%)		
CSP-based	18,216 (46)	88 (33)
TAC-based	20,593 (52)	172 (64)
Other	637 (2)	4(2)
None/unknown	274 (0)/208 (0)	0 (0)/3 (1)
Use of ATG, n (%)	3915 (10)	111 (42)
Conditioning only	3299 (8)	94 (35)
GVHD prophylaxis only	70 (0)	1 (0)
Acute GVHD treat- ment only	303 (1)	6(2)
Two or more	234(1)	10 (4)
No/unknown	35,870 (90)/152 (0)	152 (57)/4 (2)
Use of alemtuzumab, n (%)	45/38,895 (<1)	0/251 (0)
Use of ex vivo TCD, n (%)	291/38,766 (<1)	5/264 (2)
Acute GVHD grade II-IV (%)		
Yes	13,797 (35)	115 (43)
No/unknown	22,784 (57)/3347 (8)	142 (53)/10 (4)
Chronic GVHD		
Yes	12,150 (30)	88 (33)
No/unknown	18,298 (46)/9480 (24)	146 (55)/33 (12)

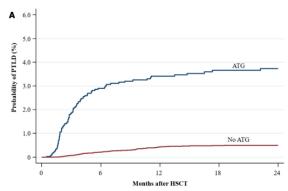
Table 3Univariate and Multivariate Analyses for the Development of PTLD

Variable		Univariate Analysis			Multivariate Analysis		
	HR	(95% CI)	P	HR	(95% CI)	P	
Year of HSCT							
1990-2009	1.00			1.00			
2010-2015	2.77	(2.13-3.61)	<.001	1.87	(1.38-2.52)	<.001	
Disease							
AML/MDS	1.00			1.00			
ALL	.99	(.69-1.44)	.98	1.08	(.75-1.57)	.68	
CML/MPD	.94	(.56-1.57)	.81	1.55	(.89- 2.69)	.12	
Lymphoid malignancies	1,24	(.88-1.75)	.22	1.33	(.92-1.92)	.13	
AA	4.95	(3.47-7.07)	<.001	5.19	(3.32-8.11)	<.001	
Others	1.91	(.97-3.76)	.06	1.94	(.97-3.89)	.06	
Conditioning regimen							
MAC	1.00			1.00			
RIC	2.00	(1.56-2.55)	<.001	.82	(.60-1.12)	.22	
Donor type							
MRD	1.00			1.00			
MMRD	10.4	(6.35-17.1)	<.001	4.39	(2.39-8.07)	<.001	
MURD	4.89	(3.07-7.79)	<.001	4.08	(2.39-6.99)	<.001	
MMURD	5.46	(2.88-10.3)	<.001	3.20	(1.58-6.47)	.001	
СВ	7.24	(4.56-11.5)	<.001	8.03	(4.72-13.7)	<.001	
Number of allogeneic HSCT							
Two or more	2.15	(1.56-2.97)	<.001	1.50	(1.05-2.15)	.03	
GVHD prophylaxis							
CSP-based	1.00			1.00			
TAC-based	2.07	(1.59-2.69)	<.001	.82	(.59-1.12)	.21	
ATG in a conditioning regimen							
Yes	7.76	(6.03-9.99)	<.001	6.13	(4.33-8.68)	<.001	
ATG for GVHD treatment*							
Yes	6.87	(4.00-11.8)	<.001	2.09	(1.17-3.72)	.01	
Acute GVHD grade II-IV*							
Yes	1.83	(1.43-2.35)	<.001	1.93	(1.48-2.52)	<.001	

^{*} ATG for GVHD treatment and acute GVHD grade II-IV were treated as time-dependent variables.

Biol Blood Marrow Transplant 25 (2019) 1441-1

Biology of Blood and Marrow Transplantation


journal homepage: www.bbmt.o

Analysis

Risk Factors and Predictive Scoring System For Post-Transplant Lymphoproliferative Disorder after Hematopoietic Stem Cell Transplantation

Ayumi Fujimoto^{1,2}, Nobuhiro Hiramoto², Satoshi Yamasaki³, Yoshihiro Inamoto⁴, Naoyuki Uchida⁵, Tetsuo Maeda⁶, Takehiko Morī ', Yoshinobu Kanda⁸, Tadakazu Kondo⁹, Souichi Shiratori¹⁰, Shigesaburo Myakoshi¹¹, Ken Ishiyama¹², Kazuhiro Ikegame¹³, Yoshiko Matsuhashi¹⁴, Junji Tanaka⁸, Tatsuo Ichinohe¹⁸, Yoshiko Matsuta^{17,18}, Masao Ogata¹⁸, Ritsuro Suzukl^{1,4}



Figure 3. Probability of PTLD with the use of ATG in conditioning. (A) The probability of PTLD was significantly higher in patients who received ATG. (B) Receipt of high-dose ATG (total dose - 2.55 mg/kg Thymoglobulin or -5.0 mg/kg ATG-F) was associated with a significantly higher risk of developing PTLD. By 2 years after HSCT, PTLD developed in 6.050 of patients who received high-dose ATG and in 2.85 of those who received low-dose ATG and in 2.85 of those who received low-dose ATG and in 2.85 of those who received low-dose ATG and in 2.85 of those who received low-dose ATG and in 2.85 of those who received low-dose ATG and in 2.85 of those who received low-dose ATG and in 2.85 of those who received low-dose ATG and in 2.85 of those who received low-dose ATG and in 2.85 of these who received low-dose ATG and in 2.85 of these who received low-dose ATG and in 2.85 of these who received low-dose ATG and in 2.85 of these who received low-dose ATG and in 2.85 of these who received low-dose ATG and in 2.85 of these who received low-dose ATG and in 2.85 of these who received low-dose ATG and in 2.85 of these who received low-dose ATG and in 2.85 of these who received low-dose ATG and in 2.85 of these who received low-dose ATG and in 2.85 of these who received low-dose ATG and in 2.85 of these who received low-dose ATG and in 2.85 of these who received low-dose ATG and in 2.85 of the second low-dose ATG and in 2.85 of the who received low-dose ATG and in 2.85 of the who received low-dose ATG and in 2.85 of the who received low-dose ATG and in 2.85 of the who received low-dose ATG and in 2.85 of the who received low-dose ATG and in 2.85 of the who received low-dose ATG and in 2.85 of the who received low-dose ATG and in 2.85 of the who received low-dose ATG and in 2.85 of the who received low-dose ATG and in 2.85 of the who received low-dose ATG and in 2.85 of the who received low-dose ATG and in 2.85 of the who received low-dose ATG and in 2.85 of the who received low-dose ATG and in 2.85 of the who received low-dose A

PTLD incidence: 0.66%

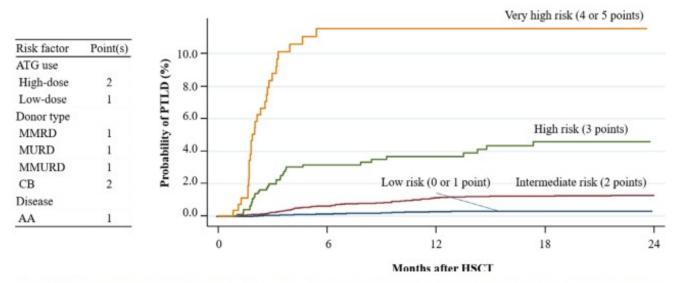


Figure 4. Probability of PTLD by the risk scoring system. Points were assigned for each risk factor as follows: high-dose ATG use, 2 points; low-dose ATG use, 1 point; MMRD, 1 point, MURD, 1 point; MMURD, 1 point; CB, 2 points, and AA, 1 point. The sum of points was used to classify risk groups: 0 or 1 point, low risk; 2 points, intermediate risk; 3 points, high risk; and 4 or 5 points, very high risk. The very-high-risk and high-risk groups had a markedly greater risk of developing PTLD, with probabilities of PTLD at 2 years after HSCT in these risk groups of 11.5% and 4.6%, respectively.

Post-transplant lymphoproliferative disorders, Epstein-Barr virus infection, and disease in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice

Upton D. Allen^{1,2,3} | Jutta K. Preiksaitis⁴ | on behalf of the AST Infectious Diseases Community of Practice

TABLE 1 Risk Factors for PTLD in solid organ transplant recipients

Early PTLD

Primary EBV infection

Type of organ transplanted (intestine > lung>heart > liver>pancreas > kidney)

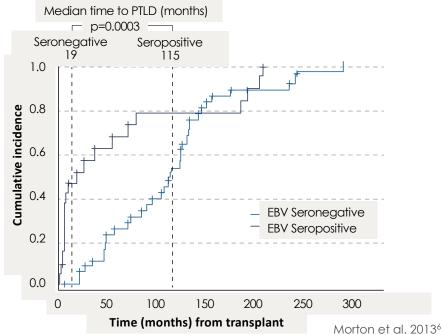
Polyclonal anti-lymphocyte antibodies^a

Young recipient age (ie, infants and young children)

Late PTLD

Duration of immunosuppression

Type of organ transplanted


Older recipient age (ie, adults)

- An overwhelming risk factor in most analyses is EBV-seronegativity pre-transplant and primary EBV infection, placing pediatric populations at higher risk of developing PTLD than their adult counterparts
- An increased risk associated with being EBV seronegative in kidney (HR 3.6), and heart (HR 4.0) but found a smaller but significantly increased risk in seronegative liver recipients (HR 1.5).
- Among seronegative pediatric recipients donor seropositivity (D+R-) and donor seronegativity (D-R-) resulted in comparable risks for PTLD at three years post-transplant, perhaps reflecting the high rate of community-acquired infection in children.
- In contrast, in seronegative adult recipients D-Rrecipients trended toward having a lower risk of PTLD than D+R- recipients which received statistical significance when a living donor was used.
- Intestinal transplant recipients appear to have an exceptional high risk of PTLD development, independent of pre-transplant EBV serostatus

EBV status and PTLD development post-SOT

 Pre-transplant EBV seronegativity increases the incidence of PTLD from 10- to 75-fold over that of EBVseropositive recipients^{1,2}

Time to PTLD onset according to EBV status at the time of transplantation³

EBV, Epstein-Barr virus; PTLD, post-transplant lymphoproliferative disorder; SOT, solid organ transplantation.

1. Walker RC, et al. Clin Infect Dis. 1995;20:1346–1353; 2. Cockfield SM. Transpl Infect Dis. 2001;3:70–78; 3. Morton M, et al. Transplantation. 2013;95:470–480.

Management of Epstein-Barr Virus infections and post-transplant lymphoproliferative disorders in patients after allogeneic hematopoietic stem cell transplantation: Sixth European Conference on Infections in Leukemia (ECIL-6) guidelines

Jan Styczynski, *Walter van der Velden,* Christopher P, Fox,* Dan Engelhard,* Rafael de la Camara,* Catherine Cordonnier,* and Per Ljungman¹ on behalf of the Sixth European Conference on Infections in Leukemia, a joint venture of the Infectious Diseases Working Party of the European Society of Blood and Marrow Transplantation (EBMT-IDWP), the Infectious Diseases Group of the European Organization for Research and Treatment of Cancer (EORTC-IDG), the International Immunocompromised Host Society (ICHS) and the European Leukemia Net (ELN)

- Prospective monitoring of EBV DNA performed by quantitative PCR is recommended.
- Screening for EBV DNA-emia should start within the first month after allo-HSCT. However, the incidence of EBV-PTLD during the first month after HSCT is estimated to be below 0.2%. Monitoring should continue for at least 4 months after HSCT, with a frequency of at least once a week.
- As the calculated doubling time for EBV might be as short as hours, more frequent sampling in patients with rising EBV DNAemia may be warranted

SPECIAL ISSUE-TRANSPLANT INFECTIOUS DISEASES WILEY Clinical Transplantation. 2019;33:e13652.

Post-transplant lymphoproliferative disorders, Epstein-Barr virus infection, and disease in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice

Upton D. Allen^{1,2,3} | Jutta K. Preiksaitis⁴ | on behalf of the AST Infectious Diseases Community of Practice

- Studies of the sensitivity and specificity of quantitative EBV viral load for the diagnosis of early PTLD and symptomatic EBV infection are limited
- The use of EBV viral load as a diagnostic test has good sensitivity for detecting EBV-positive early PTLD but misses EBV-negative as well as some cases of localized and donor-derived EBV + PTLD
- However, it had poor specificity, resulting in good negative (greater than 90%) but poor positive predictive value (as low as 28% and not greater than 65%) in these populations
- Elevated and often sustained elevation in EBV loads has been observed in 67%-72% of adult liver, 31%-29% of adult kidney, and 13%-42% (assay dependent) of adult lung transplant recipient EBV-seropositive pre-transplant and appears to be a poor marker of future PTLD risk.

Challenging issues in the monitoring of EBV/PTLD in allo-HSCT and SOT

Allo-HSCT

- Variable risk but in a short time period
- EBV-DNAemi is a sensitive marker of future PTLD
- DNAemia monitoring intensification during the first months from transplant in all transplants
- In the clinical practice EBV-DNAemia monitoring associated to CMV DNAemia monitoring

SOT

- EBV-DNAemia is a good marker of early PTLD in seronegative children and in very high risk SOTs (i.e. intestinal and multivisceral transplant)
- EBV-DNAemia is a poor marker of late PTLD
- Considering the prolonged risk over time, it is difficult to define how prolonged should be the virological monitoring.
- In view of the lack of a good marker for virological monitoring clinical suspicion of late PTLD is crucial

JPIDS 2024:13 (Suppl 1) • S31

A Focused Review of Epstein-Barr Virus Infections and PTLD in Pediatric Transplant Recipients: Guidance From the IPTA and ECIL Guidelines

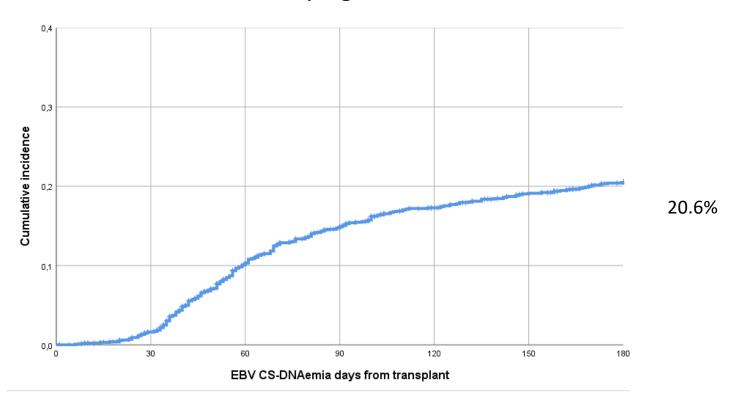
Masaki Yamada,^{1,1,©} Arnaud G. L'Huillier,^{2,3,†} and Michael Green^{4,5}

Table 2. Guideline-Endorsed Recommendations for the Prevention of EBV Disease and PTLD [1, 6].

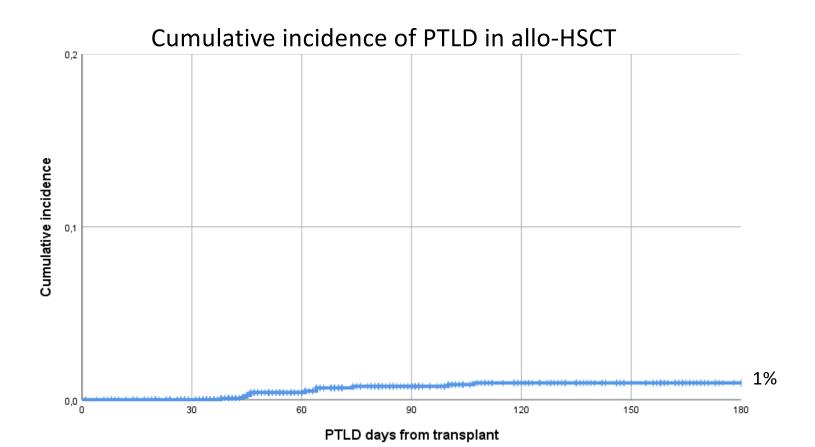
	SOT ^{a1}	HCT ^{b2}
Prophylaxis		
Chemoprophylaxis—Antivirals	Not recommended (weak/moderate to prevent EBV infection) (strong/moderate to prevent EBV disease)	Not recommended (DII)
Immunoprophylaxis		
Vaccines	Unavailable	
IVIG	Not recommended (weak/moderate)	Not recommended (DIII)
Anti-CD20	Not recommended (strong/low)	Marginally recommended (CII)
VSTs	Not recommended	Marginally recommended (CII)
Preemptive therapy		
Reduction of immunosuppression	Recommended (strong/moderate for liver) (weak/low for other organs)	Recommended when combined with anti-CD20 (AII)
Chemoprophylaxis—Antivirals	Not recommended (weak/low)	Not recommended (DIII)
Immunoprophylaxis		
Anti-CD20	Not recommended (weak/very low)	Recommended, alongside RIS whenever possible (AII)
VSTs	Not recommended (weak/low)	Marginally recommended (CII)

Abbreviations: EBV, Epstein-Barr virus; HCT, hematopoietic cell transplanation; IVIG, intravenous immunoglobulin; PTLD, post-transplant lymphoproliferative disorder, SOT, solid organ transplantation; VSTs, virus-specific T cells.

^aGrading recommendations for SOT: (x/y); x = strength of recommendation; y = quality of evidence.


^bGrading recommendations for HCT: A = strong; B = moderate; C = marginal; D = against; I = at least 1 RCT; II = at least from one clinical trial; III = expert opinion, descriptive studies.

CLINICALTRIALS.GOV IDENTIFIER: NCT04412811


Cumulative incidence of clinically significant EBV DNAemia in allo-HSCT

CLINICALTRIALS.GOV IDENTIFIER: NCT04412811

CLINICALTRIALS.GOV IDENTIFIER: NCT04412811

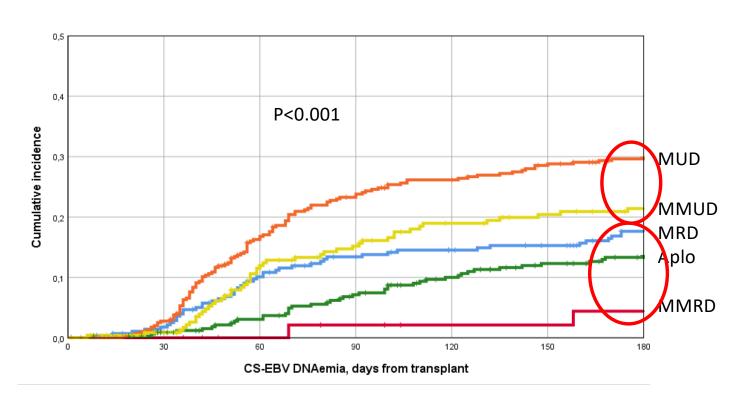
Risk of CS-EBV DNAemia: variables considered in the analysis

- Age
- Sex
- Underlying disease: AL vs other
- Disease phase: CR, chronic, noCR
- Previous allo-HSCT
- Type of donor

- Conditioning regimen
- Stem cell source
- Letermovir prophylaxis

• T-cell depletion, ATG

- PT-CY
- R/D CMV serology
- ECOG PS
- HCT-CI
- Time of engraftment
- A-GVHD
- CS-CMV DNAemia



CLINICALTRIALS.GOV IDENTIFIER: NCT04412811

Risk of CS-EBV DNAemia: type of transplant

PTLD: 11 cases

MUD: 7 cases

MMUD:2 cases

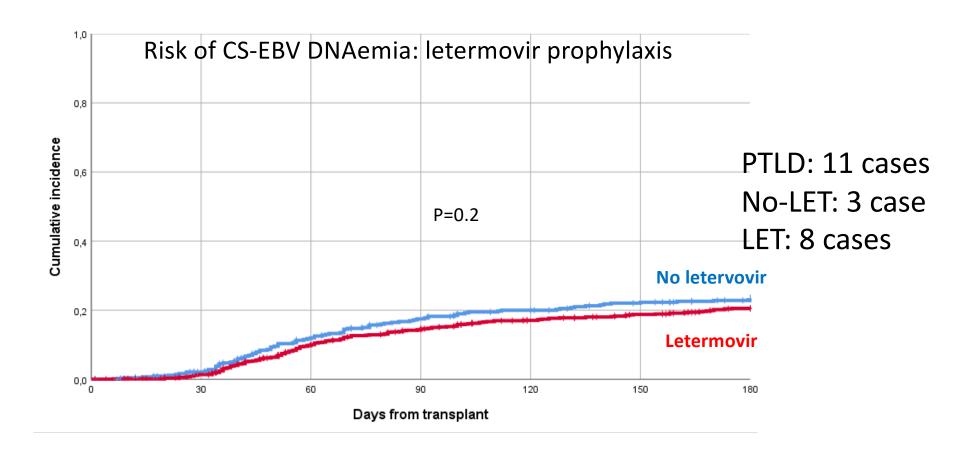
• MRD: 1 case


Aplo: 1 case

CLINICALTRIALS.GOV IDENTIFIER: NCT04412811

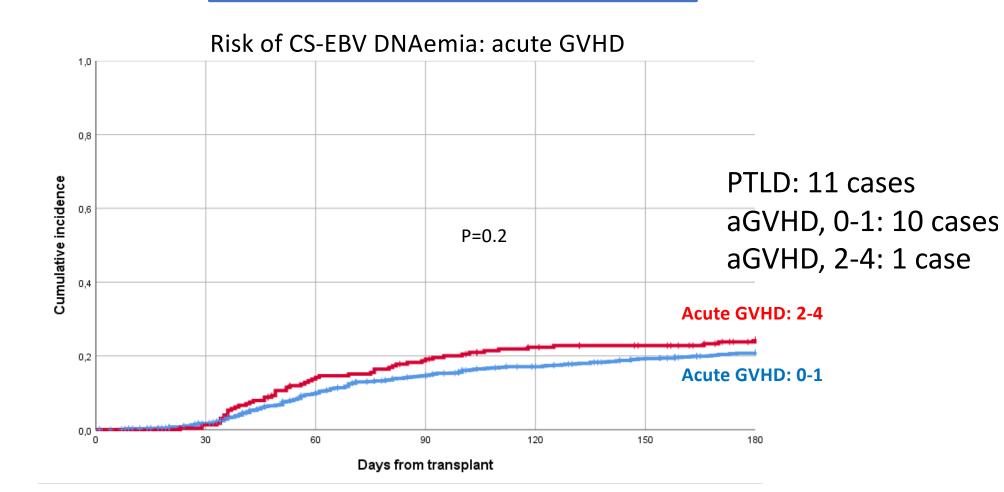
Risk of CS-EBV DNAemia: T cell depletion (ATG)

PTLD: 11 cases

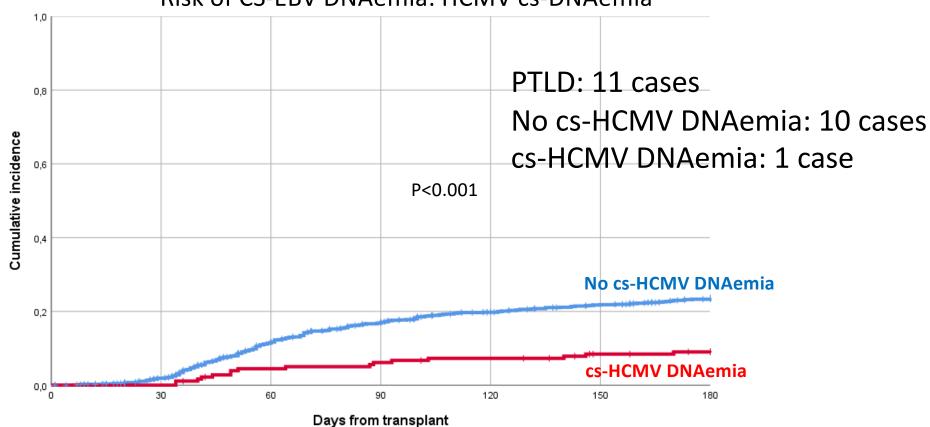

• TCD: 9 cases

No TCD:2 cases

CLINICALTRIALS.GOV IDENTIFIER: NCT04412811



CLINICALTRIALS.GOV IDENTIFIER: NCT04412811



CLINICALTRIALS.GOV IDENTIFIER: NCT04412811

Risk of CS-HCMV DNAemia, no letermovir

Variables		Univariate analysis		Multivariate analysis	
		HR (95% CI)	р	HR (95% CI)	р
Gender	Female	1.00			
	Male	1.02 (0.63-1.66)	0.93		
Age (increased by 10 years)		0.97 (0.96-0.98)	< 0.001		
0	<18 years	1.00			
Age	>= 18 years	0.22 (0.13-0.35)	< 0.001	0.25 (0.15-0.42)	<0.001
Underlying	Diseases other than	1.00			
hematologic	acute leukemia				
disease	Acute leukemia	0.67 (0.42-1.06)	0.085		
Phase of the	Complete remission	1.00			
underlying disease	Chronic phase	1.50 (0.83-2.69)	0.18		
• •	No complete	2.14 (1.22-3.77)	0.008		
at transplant	remission				
Previous HSCT	No	1.00			
	Previous auto-HSCT	0.76 (0.25-2.33)	0.64		
	Previous allo-HSCT	1.74 (0.75-4.06)	0.20		
CS-HCMV Infection	No	1.00			
in the 3 months		3.68 (1.00-13.6)	0.051		
before transplant	Yes				
	Negative/negative	1.00			
Recipient/donor	Negative/positive	7.82 (0.97-62.8)	0.053	7.80 (1.00-61.1)	0.050
HCMV serology	Positive/Negative	33.1 (4.45-246)	< 0.001	31.5(4.31-229)	<0.001
	Positive/Positive	34.1 (4.75-245)	< 0.001	21.9 (3.06-157)	0.002
ECOG performance	0-1	1.00			
status at transplant	>1	0.66 (0.21-2.05)	0.47		
HCT comorbidity index at transplant	Score 0	1.00			
	Score 1-2	0.65 (0.36-1.18)	0.16		
	Score >=3	0.39 (0.17-0.89)	0.026		
Stem Cell Source	Peripheral blood	1.00			
	Bone marrow	1.68 (1.04-2.71)	0.033		
	Cord blood	0.96 (0.15-6.20)	0.97		

Variables		Univariate	analysis	Multivariate analysis	
		HR (95% CI)	р	HR (95% CI)	р
Donor type	Matched related	1.00			
	Mismatched related	1.86 (0.71-4.90)	0.21		
	Haploidentical	1.59 (0.84-3.01)	0.15		
	Matched unrelated	1.07 (0.56- 2.06)	0.84		
	Mismatched unrelated	0.74 (0.31- 1.78)	0.50		
	Myeloablative	1.00			
Conditioning regimen	Non myeloablative/ reduced intensity	0.81 (0.47-1.40)	0.46		
	No	1.00			
T cell depletion	Yes	1.38 (0.87-2.21)	0.18		
Use of post	No	1.00			
transplant		1.25 (0.75-2.09)	0.40		
cyclophosphamide as	Yes				
GVHD prophylaxis					
Days to engraftment	<=20 days	1.00			
Days to engraturient	>20 days	1.11 (0.68-1.84)	0.67		
Prophylaxis with CMV	No	1.00			
specific immunoglobulins	Yes	0.47 (0.12-1.91)	0.29		
Acute GvHD *	Grade 0-I	1.00			
	Grade II-IV	1.43 (0.81-2.52)	0.22		
EBV DNAemia*	Negative or <1000 copies/ml	1.00			
	>=1000 copies /ml	0.33 (0.15-0.75)	0.009	0.27 (0.11-0.62)	0.002
Gram negative *	No	1.00			
bacteremia	Yes	0.81 (0.41-1.61)	0.55		
Invasive fungal	No	1.00			
disease *	Yes	0.34 (0.52-3.49)	0.55		

^{*} only cases observed before CS-HCMV infection were considered

CLINICALTRIALS.GOV IDENTIFIER: NCT04412811

Has EBV a protective role against CS-HCMV-i in patients who do not receive LET-PP?

An immunological response to EBV infection may somehow interfere with HCMV reactivation.

- EBV is a polyclonal stimulator
- EBV levels and B-cell reconstitution were prospectively monitored in a cohort of allo-HSCT patients (Burns, Blood 2015). In patients with low or undetectable levels of EBV, the circulating B-cell pool consisted predominantly of transitional and naive cells, with a marked deficiency of CD27+memory cells. On the contrary, among patients with high EBV loads, there was a significant increase in both the proportion and number of CD27+ memory B cells.
- Some murine model studies showed that memory B cells can mediate protection against CMV in the absence of T cell help and transfer of memory B cells may be effective in protecting from an already ongoing viral infection (Winkler, Blood 2006; Klenovsek 2007).